Opis zjawisk transportu elektronów w materii skondensowanej konwersja termoelektryczna

Pierwsza kwantowa teoria elektronów w metalach (model Drude-Sommerfeld) - przypomnienie

1838 Michael Faraday obserwuje przepływ prądu przez rozrzedzone powietrze, pomiędzy anodą i katodą wytwarza się łuk świetlny oprócz okolicy katody (tzw. ciemnia Faradaya) odkrycie promieni katodowych

1897 Joseph John Thomson odkrywa elektron w podobnym eksperymencie, ale z przyłożonym poprzecznym polem **E**, którym można kierować wiązkę "promieni katodowych"; wyznacza e/m.

1900 Paul Drude formułuje pierwszą elektronową teorię metali

 $\mathbf{j} = -\mathbf{e} \mathbf{n} \mathbf{v}$

1927 Arnold Sommerfeld używa statystyki Fermiego-Diraca do modelu Drudego i proponuje pierwszą kwantową teorię ruchu elektronów w metalach dając początek tzw. modelowi Drudego-Sommerfelda elektronów swobodnych.

METAL	VALENCE	$-1/R_H nec$	
Li	1	0.8	
Na	1	1.2	
ĸ	1	1.1 <-	dobra
Rb	1	1.0	zgodność
Cs	1	0.9	
Cu	1	1.5	
Ag	ĩ	1.3	staba zgodnosc
Au	1	1.5	
Re	2	- 0.2	
Mg	2	-0.4	un i no mar a dun a é é
In	3	-0.3	niezgoanosc
Al	3	-0.3	
4 64			

Współczynnik Halla wybranych pierwiastków w słabych i średnich polach B.

^a These are roughly the limiting values assumed by R_H as the field becomes very large (of order 10⁴ G), and the temperature very low, in carefully prepared specimens. The data are quoted in the form n_0/n , where n_0 is the density for which the Drude form (1.21) agrees with the measured $R_H: n_0 = -1/R_Hec$. Evidently the alkali metals obey the Drude result reasonably well, the noble metals (Cu, Ag, Au) less well, and the remaining entries, not at all.

	2'	73 K	373 K				
ELEMENT	κ (watt/cm-K)	$\kappa/\sigma T$ (watt-ohm/K ²)	к (watt/cm-K)	$\kappa/\sigma T$ (watt-ohm/K ²)			
Li	0.71	2.22×10^{-8}	0.73	2.43×10^{-8}			
Na	1.38	2.12					
K	1.0	2.23					
Rb	0.6	2.42					
Cu	3.85	2.20	3.82	2.29			
Ag	4.18	2.31	4.17	2.38			
Au	3.1	2.32	3.1	2.36			
Be	2.3	2.36	1.7	2.42			
Mg	1.5	2.14	1.5	2.25			
Nb	0.52	2.90	0.54	2.78			
Fe	0.80	2.61	0.73	2.88			
Zn	1.13	2.28	1.1	2.30			
Cd	1.0	2.49	1.0				
Al	2.38	2.14	2.30	2.19			
• In	0.88	2.58	0.80	2.60			
TI	0.5	2.75	0.45	2.75			
Sn	0.64	2.48	0.60	2.54			
Pb	0.38	2.64	0.35	2.53			
Bi	0.09	3.53	0.08	3.35			
Sb	0.18	2.57	0.17	2.69			

Eksperymentalne wartości przewodności cieplnych i liczb Lorenza dla wybranych meta

Source: G. W. C. Kaye and T. H. Laby, *Table of Physical and Chemical Constants*, Longmans Green, London, 1966.

Pomiar doświadczalny ciepła właściwego w metalicznym potasie

Współczynniki elektronowe dla ciepła właściwego (pomiar/teoria)

Li 1.63 0.749 2.18	Be 0.17 0.500 0.34	Table 2 Experimental and free electron values of electronic heat capacity constant γ of metals(From compilations kindly furnished by N. Phillips and N. Pearlman. The thermal effective mass is defined by Eq. (38).								B	C	N		
Na 1.38 1.094 1.26	Mg 1.3 0.992 1.3	Observed γ in mJ mol ⁻¹ K ⁻² . Calculated free electron γ in mJ mol ⁻¹ K ⁻² $m_{\rm th}/m = (\text{observed } \gamma)/(\text{free electron } \gamma).$									Al 1.35 0.912 1.48	Si	P	
K 2.08 1.668 1.25	Ca 2.9 1.511 1.9	Sc 10.7	Ti 3.35	V 9.26	Cr 1.40	Mn(γ) 9.20	Fe 4.98	Co 4.73	Ni 7.02	Cu 0.695 0.505 1.38	Zn 0.64 0.753 0.85	Ga 0.596 1,025 0.58	Ge	As 0.19
Rb 2.41 1.911 1.26	Sr 3.6 1.790 2.0	Υ 10.2	Zr 2.80	Nb 7.79	Mo 2.0	Tc —	Ru 3.3	Rh 4.9	Pd 9.42	Ag 0.646 0.645 1.00	Cd* 0.688 0.948 0.73	In 1.69 1.233 1.37	Sn (w) 1.78 1.410 1.26	Sb 0.11
Cs 3.20 2.238 1.43	Ba 2.7 1.937 1.4	La 10.	Hf 2.16	Ta 5.9	W 1.3	Re 2.3	Os 2.4	lr 3.1	Pt 6.8	Au 0.729 0.642 1.14	Hg(α) 1.79 0.952 1.88	TI 1.47 1.29 1.14	Pb 2.98 1.509 1.97	Bi 0.008

Investigations of electronic states near the Fermi surface $E(\mathbf{k}) = E_F$

AGH

5th Euroschool in Materials Science, Ljubljana, 24-29 May, 2010

Electron motion in solids (semi-classical)

Group velocity of electrons

$$v_{g} = \frac{d\omega}{dk} = \frac{1}{\hbar} \frac{\partial E(k)}{\partial k} = \nabla_{k} E(k) = v(k)$$

In general v-vector is NOT parallel to kvector (e.g. ellipsoid), but it is perpendicular to isoenergetic surface E(k)

v(**k**) parallel to **k** only if Fermi surface is spherical

Acceleration of electrons

 $v = \frac{\hbar k}{m} \quad \Leftrightarrow \quad E(k) = \frac{\hbar^2 k^2}{2m}$

$$F = \hbar \frac{dk}{dt} \qquad \Rightarrow \qquad a_k = \frac{dv_k}{dt} = \frac{1}{\hbar} \frac{\partial^2 E(k)}{\partial k \partial k} \frac{dk}{dt} = \frac{1}{\hbar^2} \frac{\partial^2 E(k)}{\partial k \partial k} F$$

 $a_k = (m)^{-1} F$ where $(m_{ij})^{-1} = \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k_i \partial k_j}$

In general, tensor of effective mass is independent on electron velocity

$$n(E_F) \propto \frac{\partial E(k)}{\partial k}$$

How to measure ?

$$(m_{ij})^{-1} \propto \frac{\partial^2 E}{\partial k_i \partial k_j}$$

DOS near $E=E_F$ can be detected in specific heat and magnetic susceptibility measurements Effective masses can be detected in dH-vA or transport measurements

Thermoelectric "tetragon"

$$\begin{bmatrix} \underline{j} \\ q \end{bmatrix} = \begin{bmatrix} L_{EE} L_{ET} \\ L_{TE} L_{TT} \end{bmatrix} \begin{bmatrix} E \\ - \nabla T \end{bmatrix}$$

 $\begin{bmatrix} j \\ q \end{bmatrix} = \begin{bmatrix} L_{EE} L_{ET} \\ L_{TE} L_{TT} \end{bmatrix} \begin{bmatrix} E \\ -\nabla T \end{bmatrix}$ Seebeck effect (1821)

Electric field

Explanation thermomagnetism - "magnetic" polarisation of metals and alloys due to the difference of temperature !!

Vivid personality of the Romaticism

 $S = L_{FF}^{-1}L_{FT}$

temperature gradient causes changes of magnetic field of Earth !!, Oersted's experiments (1820) "blind" scientists.

1854 Berlin

Electrical density current

Peltier coefficient

$$\Pi = L_{TE} L_{EE}^{-1}$$

1785 Ham 1845 Paris

 $\mu = T dS/dT$ $\Pi T = S$ (Thomson)

Thomson effect (1834)

$$L_{ET} = L_{TE} / T$$

Nernst-(Ettingshausen) effect (1886)

Thermo-magneto-electric effect

$$N = \frac{E_Y / B_Z}{dT / dx}$$

"Reverse" process to Nernst effect = Ettingshausen effect

Phenomenon observed when a sample conducting electrical current is subjected to a magnetic field **B** and a temperature gradient dT/dx perpendicular to each other.

 $\frac{\mu V}{KT}$

 E_y is the *y*-component of the electric field that results from the magnetic field's *z*component B_z and the temperature gradient dT/dx.

 $N \sim 0$ in metals

N large in semiconductors, superconductors, heavy-fermions, Dirac electrons in Bi, graphen, Landau levels cross Fermi level

1864 Wąbrzeźno

1941 Niwica

in differential form: $Q(z) = -k \frac{dT}{dz}$

Heat conduction equation

$$\begin{bmatrix} j \\ q \end{bmatrix} = \begin{bmatrix} L_{EE} L_{ET} \\ L_{TE} L_{TT} \end{bmatrix} \begin{bmatrix} E \\ -\nabla T \end{bmatrix}$$

Electrical density current

$$\mathbf{j} = \mathbf{\sigma} \mathbf{E}$$

Electrical conductivity

Electric field

Ohm law (1826)

 $\sigma = L_{EE} = ne\mu = ne\tau/m$

1789 Erlangen 1854 Munchen

Ohm's study inspired by works of Fourier and Seebeck

Metallic wire in cyllinder

*Declination of magnetic needle proportional to electric current I

* Seebeck thermocouple – a source of electrical potential V

V/I = R = constant when R=const. !!

"The Galvanic Circuit Investigated Mathematically" (1827)

Boltzmann equation

Electron system described by distribution function f in the (**r**, **k**) space. $\frac{1}{4\pi^3}f(k,r,t)$ Electron density current $J(r,t) = \frac{e}{4\pi^3}\int v_k f(k,r,t) dk$

Transport equation

Stationary condition

$$\frac{\partial f}{\partial t} = 0$$

time-independent forces

Collision integral

$$\left(\frac{\partial f}{\partial t}\right)_{coll}$$

Describes **e-e** scatterings/collisions , probability of exit outside the *dkdr* volume

$$\left(\frac{\partial f}{\partial t}\right)_{coll} = -\frac{f - f_0}{\tau}$$

 $\frac{df}{dt} = -\frac{dk}{dt} \cdot \nabla_k f - v \cdot \nabla_r f + \frac{\partial f}{\partial t} + \left(\frac{\partial f}{\partial t}\right)_{coll}$

Relaxation time approximation

Fermi-Dirac function in equilibrium state

Onsager coefficients 1-electron Boltzmann eq. in the presence of fields : E, B & VT

$$\vec{v_k} \cdot \vec{\nabla}T \frac{\partial f}{\partial T} + \frac{q}{\hbar} (\vec{E} + \vec{v_k} \times \vec{B}) \cdot \frac{\partial f}{\partial \vec{k}} = -\frac{f - f_0}{\tau}$$

After linearisation

$$f = f_0 - \left(q\vec{E} - \frac{\nabla T}{T}(\varepsilon_k - \mu)\right) \frac{\partial f_0}{\partial \varepsilon} \cdot \vec{\Lambda}_k$$
 where $\vec{\Lambda}_k = \tau \vec{v}_k$ Mean-free path

Electric current density

$$\vec{j} = \frac{1}{V} \sum_{k} q \vec{v}_{k} f_{k} = \left(\int d\varepsilon \ \sigma(\varepsilon) \frac{\partial f_{0}}{\partial \mu} \right) \vec{E} + \left(\int d\varepsilon \frac{1}{q} \sigma(\varepsilon) (\varepsilon - \mu) \frac{\partial f_{0}}{\partial \mu} \right) \left(- \frac{\nabla T}{T} \right)$$

Heat density current

$$\vec{j}^{Q} = \frac{1}{V} \sum_{k} (\varepsilon_{k} - \mu) \vec{v}_{k} f_{k} = \left(\int d\varepsilon \frac{1}{q} \sigma(\varepsilon) (\varepsilon - \mu) \frac{\partial f_{0}}{\partial \mu} \right) \vec{E} \qquad \vec{j} = L_{11} \vec{E} + L_{12} \left(-\frac{\nabla T}{T} \right) \vec{E} + \left(\int d\varepsilon \frac{1}{q^{2}} \sigma(\varepsilon) (\varepsilon - \mu)^{2} \frac{\partial f_{0}}{\partial \mu} \right) \left(-\frac{\nabla T}{T} \right), \qquad \vec{j}^{Q} = L_{21} \vec{E} + L_{22} \left(-\frac{\nabla T}{T} \right) \vec{E} + L_{22} \left(-\frac{\nabla$$

Transport functions

With applied **E** and ∇T (**B=0**)

Transport function

$$\sigma(\varepsilon) = \frac{q^2 \tau}{V} \sum_{k} \vec{v}_k \vec{v}_k \delta(\varepsilon_k - \varepsilon)$$

Applying additional magnetic field **B** (Hall effect)

Mean free path of electrons

$$\vec{\Lambda}_{k} = \tau \vec{v}_{k} - \frac{q\tau}{\hbar} \left(\vec{v}_{k} \times \vec{B} \cdot \frac{\partial}{\partial \vec{k}} \right) \vec{\Lambda}_{k}$$

Electrical current density

$$\vec{j} = \frac{1}{V} \sum_{k} q \vec{v}_{k} f_{k} = \left(\int d\varepsilon \sigma_{B}(\varepsilon) \frac{\partial f_{0}}{\partial \mu} \right) \vec{E} = \sigma(\vec{B}) \vec{E}$$

Magnetic transport function

$$\sigma_{B}(\varepsilon) = \frac{q^{2}}{V} \sum_{k} \vec{v}_{k} \vec{\Lambda}_{k} \delta(\varepsilon_{k} - \varepsilon)$$

Transport coefficients

Thermopower

Thermal conductivity

Hall coefficient

Hall concentration

Lorenz factor

 $\sigma = L_{11}$,

when
$$\nabla T = 0$$

when $\mathbf{j} = 0$

$$\kappa_e = \frac{1}{T} \left(L_{22} - \frac{L_{21}L_{12}}{L_{11}} \right),$$

$$R_H = \frac{\rho_{yx}}{B},$$

$$n_H \equiv \frac{1}{R_H q} = \alpha(n)n$$

$$L = \frac{\kappa_e}{T\sigma} = \frac{1}{T} \frac{L_{22} - L_{21}(L_{11})^{-1}L_{12}}{L_{11}}$$

$\begin{bmatrix} j \\ q \end{bmatrix} = \begin{bmatrix} L_{EE} L_{ET} \\ L_{TE} L_{TT} \end{bmatrix} \begin{bmatrix} E \\ - \nabla T \end{bmatrix}$ Kinetic theory of Ziman

 $\sigma(T) = e^2/3 \int dE N(E) v^2(E) \tau (E,T) [-\partial f(E)/\partial E]$

Electrical conductivity

 $S(T) = e(3T\sigma)^{-1} \int dE N(E) v^{2}(E) E \tau (E,T) [-\partial f(E) / \partial E] =$

 $(3eT\sigma)^{-1}\int dE \sigma(E,T) E [-\partial f(E) / \partial E]$

Thermopower (Seebeck coefficient)

 $N(E) = (2\pi)^{-3} \int \delta(E(\mathbf{k})-E) d\mathbf{k}$ DOS (density of states)

Thermal conductivity

$$\kappa/\sigma \approx L_0 T$$
, $L_0 = const \kappa \approx -L_{\tau\tau}$

Wiedemann-Franz law, L₀ Lorentz number

Relaxation time in transport Boltzman equation

KKR-CPA method & complex bands

CPA much better than virtual crystal approx.

V_{VCA}

Present KKR-CPA code allows for treatment of more than 2 atoms on disordered site, but within *muffin-tin* potential (problem with CPA condition), CPA is also solved self-consistently; imaginary part of $E(\mathbf{k})$ related to electron life-time due to disorder !

Thermoelectric materials

Electronic structure peculiarities

Half-Heusler (VEC=18)

Semiconductors/semimetals (CoTiSb, NiTiSn, FeVSb, ...)

<u>9+4+5=18</u> wide variety !!

<u>Skutterudites</u> (VEC=96) semiconductors/semimetals (CoSb₃, RhSb₃, IrSb₃, CoP₃ ...) <u> $4 \times 9 + 12 \times 5 = 96$ </u>

Zintl phases (VEC=62) semiconductors/semimetals $(Y_3Cu_3Sb_4, Y_3Au_3Sb_4, ...)$ **3 x 4 + 3 x 10 + 4 x 5 = 62**

Concepts of ZT improvement

Sharp DOS (heavy fermions, QC, low dimension).

PGEC – "phonon glass" + "electron crystal" (Slack, '95)

more complex structures + specific vibrations (rattling, phonon, magnon)

skutterudites

clathrates B. Lenoir, GDR-Thermo, Bordeaux (2008)

25

Enhancement of TE efficiency in PbTe

(distortion of electronic DOS)

$$\mathbf{S} = \frac{\pi^2}{3} \frac{k_B}{q} k_B T \left\{ \frac{1}{n} \frac{dn(E)}{dE} + \frac{1}{\mu} \frac{d\mu(E)}{dE} \right\}_{E=E_F}$$

Mott's formula for thermopower

J. Heremans et al., Science **321** (2008) 544

10

8

Electron transport coefficients

$$\begin{split} \boldsymbol{\sigma}_{e} &= \mathcal{L}^{(0)}, \\ \boldsymbol{S} &= -\frac{1}{eT} \frac{\mathcal{L}^{(1)}}{\mathcal{L}^{(0)}}, \\ \boldsymbol{\kappa}_{e} &= \frac{\mathcal{L}^{(2)}}{e^{2}T} - \frac{\mathcal{L}^{(1)}\mathcal{L}^{(1)}}{e^{2}T\mathcal{L}^{(0)}} \end{split}$$

Electrical conductivity

Seebeck coefficient (thermopower)

Electronic thermal conductivity

 $L(T) = \frac{\kappa_e(T)}{\sigma(T)T}$ Wiedemman-Franz-Lorenz

Onsager-related functions

$$\mathscr{L}^{(\alpha)} = \int d\mathscr{E} \left(-\frac{\partial f}{\partial \mathscr{E}} \right) (\mathscr{E} - \mu)^{\alpha} \sigma(\mathscr{E})$$

Transport functions (in general tensors)

$$\sigma T$$

$$PF = S^{2}\sigma$$

$$ZT = \frac{S^{2}\sigma T}{\kappa_{e} + \kappa_{l}}$$

$$L(T, n)$$

$$PF(T, n)$$

$$ZT(T, n)$$

 $L = \frac{\kappa_e}{-}$

$$\boldsymbol{\sigma}(\mathscr{E}) = e^2 \sum_n \int \frac{d\mathbf{k}}{4\pi^3} \tau_n(\mathbf{k}) \mathbf{v}_n(\mathbf{k}) \otimes \mathbf{v}_n(\mathbf{k}) \delta(\mathscr{E} - \mathscr{E}_n(\mathbf{k}))$$

SCTE2016, April 11-15, Zaragoza, Th. AK.2., Thermoelectrics

Boltzmann transport & KKR-CPA calculations

of complex energy bands and thermopower

K. Kutorasinski, Ph.D. Thesis (2014)

Different approximations used

(1) $\tau = \text{const};$ (2) $\lambda = \text{const};$ (3) $\mu = \text{const};$ (4) CPA (velocity + life-time);

DOS vs. transport function $\sigma(E)$

Small substitution/doping 0.01-0.05 el. per Co₄Sb₁₂

Doped CoSb₃: FS vs. Hall concentration (rigid band)

Chaput, ... JT, PRB (2005)

Doped CoSb₃: electrical resistivity

Constant relaxation time (only one free parameter selected in order to gain the best fits to experimental resistivity curves, includes also lattice contribution) $(\tau \sim 10^{-14} \text{ s})$, concentration of carriers taken from Hall measurements (not from nominal composition !)

Chaput, ... JT, PRB (2005)

Doped CoSb₃: thermopower

Experiment (literature)

FLAPW calculations

Constant relaxation time – NOT important, since Seebeck coefficient Does not depend on this parameter – Excellent test for theory !! $S(T) = e(3T\sigma)^{-1} \int dE N(E) v^{2}(E) E \tau(E,T) [-\partial f(E)/\partial E]$