
EElleeccttrroonniicc  ssttrruuccttuurree  ooff  ssoolliiddss  ((II))  
KKrroonniigg--PPeennnneeyy  mmooddeell  
In order to simplify the problem the potential function is approximated by a rectangular potential: 

    
  

UUssiinngg  BBlloocchh''ss  tthheeoorreemm,,          

  



wwee  oonnllyy  nneeeedd  ttoo  ffiinndd  aa  ssoolluuttiioonn  ffoorr  aa  ssiinnggllee  ppeerriioodd,,  mmaakkee  ssuurree  iitt  iiss  ccoonnttiinnuuoouuss  aanndd  ssmmooootthh,,  aanndd  ttoo  
mmaakkee  ssuurree  tthhee  ffuunnccttiioonn  uu((xx))  iiss  aallssoo  ccoonnttiinnuuoouuss  aanndd  ssmmooootthh..  CCoonnssiiddeerriinngg  aa  ssiinnggllee  ppeerriioodd  ooff  tthhee  
ppootteennttiiaall..  WWee  hhaavvee  ttwwoo  rreeggiioonnss  hheerree..  WWee  wwiillll  ssoollvvee  ffoorr  eeaacchh  iinnddeeppeennddeennttllyy::  

  

  

  

  

In order to find u(x) in each region we need to manipulate the probability function: 

  

  

And in the same manner: 
uu((  −−  bb  <<  xx  <<  00))  ==  BBee   ++  BB''ee  ii((ββ  −−  kk))xx −−  ii((ββ  ++  kk))xx

To complete the solution we need to make sure the probability function continuous and smooth, i.e: 
  

And that u(x) and u'(x) are periodic 
  

 

There conditions yield the following matrix: 
  



  

  

 

In order for us not to have the trivial solution, the determinant of the matrix must be 0. After playing a 
bit with the determinant we get the following expression: 

  

In order to further simplify the expression, we will perform the following approximations: 
 

  
  

  

 

The expression will now be: 

  

 depending on energy E > U0 or E < U0   



  
      EEgg  

  
OOrriiggiinn  ooff  bbaanndd  ggaappss::        --11    ≤≤    [[  ccooss((ααaa))--PP  ssiinn((ααaa))  //  ((ααaa))  ]]    ≤≤    11    
  
  
BBaanndd  ggaapp  wwiiddtthh::    EEgg  aappppeeaarrss  bbeettwweeeenn  aanngglleess  ((nnππ,,  nnππ++22φφ)),,    
  

  
CCoonncclluussiioonn::  wwhheenn  eelleeccttrroonn  eenneerrggyy  iinnccrreeaasseess  eenneerrggyy  ggaapp  ((22φφ))  ddeeccrreeaasseess,,    
ssiinnccee  eelleeccttrroonnss  bbeeccoommee  ttoo  bbee  mmoorree  ffrreeee..  



  
LLiinneeaarr  CCoommbbiinnaattiioonn  ooff  AAttoommiicc  OOrrbbiittaallss  ((LLCCAAOO))::  

  
((22  aattoommss--  ee..gg..  hhyyddrrooggeenn  HH22))  

  
HH  ==  TT  ++  VV11((rr))  ++  VV22((rr))  

 

where T is the kinetic energy operator for the electron, V1(r) is the Coulomb potential energy operator 
describing the interaction of the electron with proton 1, and the last term, V2(r) is just the same thing 
but with proton 2. We will label our basis functions simply as |1> (1s function centred on proton 1) 
and |2> (1s function centred on proton 2). Then we have:  

<1|H|1> = <1|T + V1(r)|1> + <1|V2(r)|1> = E1s + V 

Here, E1s is the energy of the ground state of the isolated hydrogen atom, and V is the energy of 
interaction of the electron with the second proton.  

The second matrix element, <1|H|2>, will look like this:   

<1|H|2> = <1|T + V2(r)|2> + <1|V1(r)|2>. 

But notice that the first term in the right hand side is zero, because we are assuming that <1| and |2> 
form an orthonormal set, and thus  

<1|T + V2(r)|2> = <1|E1s |2> = E1s <1|2> = 0.  

 



Therefore we have 

<1|H|2> = <1|V1(r)|2> = W 
 

Likewise, it is easy to see that the other remaining integrals are  

<2|H|1> = <1|H|2> = W and <2|H|2> = <1|H|1> = E1s + V 
 

So, we now have the matrix form of the Hamiltonian for the H+
2 molecule. Now, let's turn to the wave 

function; we still don't know what this is, but we do know that it will be expressed in terms of our 
basis set as  

|ψ> = C1 |1> + C2 |2>, 

i.e. as a linear combination of our chosen basis set, the two 1s functions centred on either proton. And 
we also know that the wave function will be the solution of the Schrödinger equation. So let us write 
down the Schrödinger equation in matrix form:  

  
  
  
  
  



wwhhiicchh,,  aafftteerr  ssoommee  rreeaarrrraannggeemmeenntt  iiss  sseeeenn  ttoo  bbee  eeqquuiivvaalleenntt  ttoo    
  
  

  
  
  
  
TThhiiss  ssyysstteemm  ooff  eeqquuaattiioonnss  ccaann  oonnllyy  hhaavvee  nnoonn--ttrriivviiaall  ssoolluuttiioonnss  iiff  tthhee  ffoolllloowwiinngg  ccoonnddiittiioonn  hhoollddss    
  

  
  
wwhhiicchh  ggiivveess  uuss  aa  qquuaaddrraattiicc  eeqquuaattiioonn  ffoorr  tthhee  eeiiggeennvvaalluuee  EE,,  wwhhiicchh  oonnccee  ssoollvveedd  hhaass  ttwwoo  ssoolluuttiioonnss::    
  

EEbb  ==  EE11ss  ++  VV  ++  WW  aanndd    EEaa  ==  EE11ss  ++  VV  ––  WW  
  

Thus we have obtained, in equations, the two eigenvalues of the system.  



 

WWaavvee  ffuunnccttiioonnss  aanndd  bboonndd  cchhaarrggee  
  

TToo  oobbttaaiinn  tthhee  ccoorrrreessppoonnddiinngg  eeiiggeennssttaatteess,,  wwee  ttaakkee  eeaacchh  ooff  tthhee  ffoouunndd  eeiiggeennvvaalluueess  iinn  ttuurrnn  aanndd,,  
ssuubbssttiittuuttiinngg  tthheemm  iinn  tthhee  SScchhrrööddiinnggeerr  eeqquuaattiioonn,,  wwee  ssoollvvee  ffoorr  tthhee  vvaalluueess  ooff  CC11  aanndd  CC22..  WWhheenn  wwee  ddoo  tthhiiss  
wwee  ffiinndd    
  

||ψψbb>>  ==  NN  ((  ||11>>  ++  ||22>>))    aanndd      ||ψψaa>>  ==  NN  ((  ||11>>  --  ||22>>))  
  
where N is a normalisation constant (equal to 2-½). Because W is negative, Eb is the lowest of the two 
eigenvalues, i.e. it is the energy of the ground state. |ψb>, the ground state wave function, looks 
pictorially like this:  

  
TThhee  cchhaarrggee  ddeennssiittyy,,  ||ψψbb  ||22,,  llooookkss  mmoorree  oorr  lleessss  ssiimmiillaarr..  AAss  yyoouu  ccaann  sseeee,,  tthheerree  iiss  aa  bbuuiilldd  uupp  ooff  eelleeccttrroonniicc  
cchhaarrggee  iinn  tthhee  rreeggiioonn  bbeettwweeeenn  tthhee  ttwwoo  pprroottoonnss,,  aanndd  tthhiiss  bbuuiilldd  uupp  ooff  cchhaarrggee  hheellppss  ttoo  hhoolldd  tthhee  mmoolleeccuullee  
ttooggeetthheerr,,  ccoonnssttiittuuttiinngg  aa  cchheemmiiccaall  bboonndd..  BBeeccaauussee  tthhee  mmoolleeccuullee  iiss  aaccttuuaallllyy  hheelldd  ttooggeetthheerr  bbyy  tthhee  sshhaarriinngg  
ooff  aann  eelleeccttrroonn  bbeettwweeeenn  ttwwoo  nnuucclleeii,,  tthhiiss  iiss  aann  eexxaammppllee  ooff  aa  ccoovvaalleenntt  cchheemmiiccaall  bboonndd..    



  
 

 

However, for the excited state, the wave function looks like this:  

  

aanndd  tthhee  cchhaarrggee  ddeennssiittyy  ((tthhee  ssqquuaarreedd  nnoorrmm  ooff  tthhee  wwaavvee  ffuunnccttiioonn))  llooookkss  lliikkee  tthhiiss::    
  
  

  



 

Given a system characterised by the Hamiltonian H, and given an approximate wave function for the 
ground state of the system, ψ, then we can evaluate the following quantity    

 

Rc = [∫ ψ*Hψdr]/ [∫ψ* ψdr] 

 

which is known as the Rayleigh quotient. The Variational principle states simply that the Rayleigh 
quotient provides a value Rc which is always larger than the exact energy of the ground state, i.e.  

 

Rc ≥ Eexact

the equality occurring if and only if ψ is the exact wave function.  

The variational principle is important not only because it tells us that an approximate wave function 
always gives an energy higher than the exact one, but it also tells us how to improve our approximate 
wave functions. Imagine that we have a basis set {φ} in which we wish to expand the wave function ψ, 
namely:     

ψ = ∑ncn φn. 



Then the Rayleigh quotient would be written as  

Rc = [∑m∑n cm*cnHmn]/ [∑m∑n cm*cnSmn] 
where 

Hnm = ∫ φm*H φndr  and  Snm = ∫φm* φndr 

      Coulomb integral  Overlap intergral 

are the Hamiltonian and overlap matrix elements respectively.  

The condition that the Rayleigh quotient Rc be a minimum with respect to the values of the expansion 
coefficients is that the partial derivatives of the quotient with respect to each coefficient be all equal to 
zero. In other words:  

∑n(Hmn -E Smn) Cn = 0  for all m. 
These constitute a set of N linear equations in the unknown coefficients Cn, where N is the size of the 
basis set. This type of set of linear equations constitutes an eigenvalue problem. The equations only 
have solution for certain allowed values of the energy E, the eigenvalues of the system. For each 
allowed value Ei, there is a non-trivial solution, i.e. a set of values of the coefficients Cn

(i), which give 
the best approximation to the wave function of state i, within this basis set. This set of equations can 
be written in a more compact form using matrix notation as  HC = ESC,   where now C is a 
vector of length N, with each element being one of the Cn coefficients.  



 

The general feature of the TB method is 
already clear from the 1D case of a line or ring 
of atoms. When overlaps are allowed only 
between nearest neighbours, the energy 
depends on k as cos(ka), i.e.  

E = α + βcos(ka) 
where -π/a < k < π/a and a is the spacing along 
the chain. This says that k is confined to the 
first Brillouin zone. When more overlaps are 
allowed, e.g. with second nearest neighbours at 
distance 2a, then the term in β becomes a sum 

of different βs, each with their own value, and correponding cosine terms with argument (2ka), etc.  

Generating corresponding series for 2D and 3D geometries of course involves the reciprocal lattice 
and the vector k, but is otherwise analogous. Thus the simplest 2D or 3D case, for centro-symmetric 
crystals, has an energy structure  

E = α + 2β{∑ Rcos(k.R)} 
where the atom neighbours are found at positions + and - R with respect to the atom under 
consideration. Thus the band structure depends on the crystal structure via R, and the energy is a 
function of both the magnitude and the direction of k.  



sspp22  HHyybbrriidd  aattoommiicc  oorrbbiittaallss    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 

  

 

sspp33  HHyybbrriidd  aattoommiicc  oorrbbiittaallss
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 

  

 

  
sspp  HHyybbrriidd  aattoommiicc  oorrbbiittaallss    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



  

  

  

MMuullttiippllee  bboonnddss  wwiitthh  VVBB  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 

 

 

  

MMoolleeccuullaarr  OOrrbbiittaallss  ffrroomm  pp  AA..OO..    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 



MMooddeerrnn  MMOO  ccaallccuullaattiioonnss    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

WW..  KKoohhnn
((11992233--))  

JJ..  AA..  PPooppllee  
((11992255--22000044))

  

  

  

NNoobbeell  pprriizzee  iinn  CChheemmiissttrryy
11999988  

  

  

  

  



  

 

  nn==11,,  
ll==00  

nn==22,,  
ll==00  

nn==22,,  
ll==11  

nn==33,,  
ll==00  

nn==33,,  
ll==11  

nn==33,,  
ll==22  

nn==44,,  
ll==00  

nn==44,,  
ll==11  

nn==44,,  
ll==22  

nn==44,,  
ll==33  

mm==00                      

mm==11                      

mm==22                      

mm==33                      
  



TThheeoorryy  ooff  BBrriilllloouuiinn  zzoonneess  aanndd  FFeerrmmii  ssuurrffaaccee  
  
 
A Brillouin Zone is defined as a Wigner-Seitz primitive cell in the reciprocal lattice.To find this, 
draw the reciprocal lattice. Then, use the same algorithm as for finding the Wigner-Seitz 
primitive cell in real space (draw vectors to all the nearest reciprocal lattice points, then bisect 
them. The resulting figure is your cell).The nice result of this is that it has a direct relation to 
the diffraction condition:   

k ⋅ ½ G = (G/2)2

  
  
 

The zone we have drawn above using the 
Wigner-Seitz method is called the first 
Brillouin zone. The zone boundaries are k = 
+/-π/a (to make the total length to a side 2π/a 
in reciprocal space).The 1 st Brillouin zone is 
the smallest volume entirely enclosed by the 
planes that are perpendicular bisectors of the 
reciprocal lattice vectors drawn from the 
origin. Usually, we don’t consider higher 
zones when we look at diffraction.  

However, they are of use in energy-band theory. 



The set of all wave vectors K that yield plane waves with the periodicity of a given Bravais 
lattice is known as its reciprocal lattice. Analytically, K belongs to the reciprocal lattice of a 
Bravais lattice of points R, provided that the relation  

 

holds for any r, and all R in Bravais lattice. Factoring out   

we can characterize the reciprocal lattice as the set of wave vectors K satisfying  

  for all R in the Bravais lattice.  
    The reciprocal lattice is itself a Bravais lattice and its primitive vectors can be generated 
from the vectors of the direct lattice. Let a1, a2, a3  be a set of primitive vectors, then the 
reciprocal lattice can be generated by the three primitive vectors:  

     
Using the relations between direct and reciprocal lattice it can be shown that the reciprocal 
lattice of sc is sc (at k space), the reciprocal of bcc is fcc, and reciprocal of fcc is bcc.  
     The first Brillouin zone could be defined as the set of points in k space that can be 
reached from the origin without crossing any Bragg plane; The second Brillouin zone is the 
set of points that can be reached from the first zone by crossing only one Bragg plane. The 
(n + 1)th Brillouin zone is the set of points not in the (n - 1)th zone that can be reached from 
the nth zone by crossing n - 1 Bragg planes.  



 
  FFiirrsstt  zzoonnee  SSeeccoonndd  zzoonnee  TThhiirrdd  zzoonnee  

sscc  

    
  

ffcccc  

  
    

bbcccc  

  
    

 



MMoorree  ccoommpplleexx  ccaasseess::  uunniitt  cceellll  aanndd  ccoorrrreessppoonnddiinngg  BBrriilllloouuiinn  zzoonnee  iinn  ddiiffffeerreenntt  ssttrruuccttuurreess    
  
bbcccc,,  NN==22,,  ddooddeeccaahheeddrroonn  wwiitthh  1122  ppllaanneess          ggaammmmaa--bbrraassss,,  NN==5522,,  ppoollyyhheeddrroonn  wwiitthh  3366  ppllaanneess 
  

{{441111}}

{{333300}}
  
  
  
  
  
  
  
ffcccc,,  NN==44,,  ttrruunnccaatteedd  ooccttaahheeddrroonn  wwiitthh  1144  ppllaanneess    11//11--11//11--11//11  aapppprrooxxiimmaanntt,,  NN==116600,,  ppoollyyhheeddrroonn  wwiitthh  8844  ppllaanneess 

  
  

(710)

(710)

(710)

(710)

(550)

(550)

(550)

(550)

(543)(543)

(543)

(543)
(543)

(543)

(543)(543)

(543)

(543)

(543) (543)

(543) (543)

(543)

(710)

(543)

(543)

  
  
  
  
  
  
  
  
  



HHaarrrriissoonn  pprroocceedduurree  ffoorr  eemmppttyy  
22DD  llaattttiiccee  ((FFeerrmmii  ssuurrffaaccee  sspphheerree    
iinn  33  rreepprreesseennttaattiioonnss))    
 

    
 

 
(extended zones)      (reduced zone)  
 (periodic zone)   



  



























Points inside the Brillouin zone
Notes by Andrea Dal Corso (SISSA - Trieste)

1



1 Brillouin zone

Quantum ESPRESSO (QE) support for the definition of high symmetry lines inside the
Brillouin zone (BZ) is still rather limited. However QE can calculate the coordinates of the
vertexes of the BZ and of particular points inside the BZ. These notes show the shape and
orientation of the BZ used by QE. The principal direct and reciprocal lattice vectors, as imple-
mented in the routine latgen, are illustrated here together with the labels of each point. These
labels can be given as input in a band or phonon calculation to define paths in the BZ. This
feature is available with the option tpiba b or crystal b in a ’bands’ calculation or with the
option q in band form in the input of the matdyn.x code. Lines in reciprocal space are defined
by giving the coordinates of the starting and ending points and the number of points of each
line. The coordinates of the starting and ending points can be given explicitly with three real
numbers or by giving the label of a point known to QE. For example:

X 10

gG 25

0.5 0.5 0.5 1

indicate a path composed by two lines. The first line starts at point X, ends at point Γ, and
has 10 k points. The second line starts at Γ, ends at the point of coordinates (0.5,0.5,0.5)

and has 25 k points. Greek labels are prefixed by the letter g: gG indicates the Γ point, gS
the Σ point etc. Subscripts are written after the label: the point P1 is indicated as P1. In
the following section you can find the labels of the points defined in each BZ. There are many
conventions to label high symmetry points inside the BZ. The variable point label type

selects the set of labels used by QE. The default is point label type=’SC’ and the labels
have been taken from W. Setyawan and S. Curtarolo, Comp. Mat. Sci. 49, 299 (2010).
Other choices can be more convenient in other situations. The names reported in the web
pages http://www.cryst.ehu.es/cryst/get kvec.html are available for some BZ. You can
use them by setting (point label type=’BI’), others can be added in the future. This option
is available only with ibrav6=0 and for all positive ibrav with the exception of the base centered
monoclinic (ibrav=13), and triclinic (ibrav=14) lattices. In these cases you have to give all
the coordinates of the k-points.

1.1 ibrav=1, simple cubic lattice

The primitive vectors of the direct lattice are:

a1 = a(1, 0, 0),

a2 = a(0, 1, 0),

a3 = a(0, 0, 1),

while the reciprocal lattice vectors are:

b1 =
2π

a
(1, 0, 0),

b2 =
2π

a
(0, 1, 0),

b3 =
2π

a
(0, 0, 1).

The Brilloin zone is:
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X1 is available only with point label type=’BI’.

1.2 ibrav=2, face centered cubic lattice

The primitive vectors of the direct lattice are:

a1 =
a

2
(−1, 0, 1),

a2 =
a

2
(0, 1, 1),

a3 =
a

2
(−1, 1, 0),

while the reciprocal lattice vectors are:

b1 =
2π

a
(−1,−1, 1),

b2 =
2π

a
(1, 1, 1),

b3 =
2π

a
(−1, 1,−1).

The Brillouin zone is:
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Labels corresponding to point label type=’SC’ and to point label type=’BI’ are shown
on the left and on the right, respectively.

1.3 ibrav=3, body centered cubic lattice

The primitive vectors of the direct lattice are:

a1 =
a

2
(1, 1, 1),

a2 =
a

2
(−1, 1, 1),

a3 =
a

2
(−1,−1, 1),

while the reciprocal lattice vectors are:

b1 =
2π

a
(1, 0, 1),

b2 =
2π

a
(−1, 1, 0),

b3 =
2π

a
(0,−1, 1).
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H1 is available only with point label type=’BI’.

1.4 ibrav=4, hexagonal lattice

The primitive vectors of the direct lattice are:

a1 = a(1, 0, 0),

a2 = a(−1

2
,

√
3

2
, 0),

a3 = a(0, 0,
c

a
),

while the reciprocal lattice vectors are:

b1 =
2π

a
(1,

1√
3
, 0),

b2 =
2π

a
(0,

2√
3
, 0),

b3 =
2π

a
(0, 0,

a

c
).

The BZ is:

The figure has been obtained with c/a = 1.4.
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1.5 ibrav=5, trigonal lattice

The primitive vectors of the direct lattice are:

a1 = a(

√
3

2
sin θ,−1

2
sin θ, cos θ),

a2 = a(0, sin θ, cos θ),

a3 = a(−
√

3

2
sin θ,−1

2
sin θ, cos θ),

while the reciprocal lattice vectors are:

b1 =
2π

a
(

√
3

2
sin θ,−1

2
sin θ, cos θ),

b2 =
2π

a
(0, sin θ, cos θ),

b3 =
2π

a
(−
√

3

2
sin θ,−1

2
sin θ, cos θ),

where sin θ =
√

2
3

√
1− cosα and cos θ =

√
1
3

√
1 + 2 cosα and α is the angle between any two

primitive direct lattice vectors. There are two possible shapes of the BZ, depending on the
value of the angle α. For α < 90◦ we have:

The figure has been obtained with α = 70◦. For 90◦ < α < 120◦ we have:
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The figure has been obtained with α = 110◦.

1.6 ibrav=6, simple tetragonal lattice

The primitive vectors of the direct lattice are:

a1 = a(1, 0, 0),

a2 = a(0, 1, 0),

a3 = a(0, 0,
c

a
),

while the reciprocal lattice vectors are:

b1 =
2π

a
(1, 0, 0),

b2 =
2π

a
(0, 1, 0),

b3 =
2π

a
(0, 0,

a

c
).

The figure has been obtained with c/a = 1.4.
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1.7 ibrav=7, centered tetragonal lattice

The primitive vectors of the direct lattice are:

a1 =
a

2
(1, 1,

c

a
),

a2 =
a

2
(1,−1,

c

a
),

a3 =
a

2
(−1,−1,

c

a
),

while the reciprocal lattice vectors are:

b1 =
2π

a
(1,−1, 0),

b2 =
2π

a
(0, 1,

a

c
),

b3 =
2π

a
(−1, 0,

a

c
).

In this case there are two different shapes of the BZ depending on the c/a ratio. For c/a < 1
we have:

The figure has been obtained with c/a = 0.5 (a > c). For c/a > 1 we have:
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The figure has been obtained with c/a = 1.4 (a < c). Labels corresponding to point label type=’SC’

are shown on the left, those corresponding to point label type=’BI’ on the right.

1.8 ibrav=8, simple orthorhombic lattice

The primitive vectors of the direct lattice are:

a1 = a(1, 0, 0),

a2 = a(0,
b

a
, 0),

a3 = a(0, 0,
c

a
),

while the reciprocal lattice vectors are:

b1 =
2π

a
(1, 0, 0),

b2 =
2π

a
(0,

a

b
, 0),

b3 =
2π

a
(0, 0,

a

c
).

The figure has been obtained with b/a = 1.2 and c/a = 1.5.
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1.9 ibrav=9, one-face centered orthorhombic lattice

The direct lattice vectors are:

a1 =
a

2
(1,

b

a
, 0),

a2 =
a

2
(−1,

b

a
, 0),

a3 = a(0, 0,
c

a
),

while the reciprocal lattice vectors are

b1 =
2π

a
(1,

a

b
, 0),

b2 =
2π

a
(−1,

a

b
, 0),

b3 =
2π

a
(0, 0,

a

c
).

There is one shape that can have two orientations depending on the ratio between of a and b:

The figures have been obtained with b/a = 0.8 and c/a = 1.4 (left part b < a) and b/a = 1.2
and c/a = 1.4 (right part b > a).

1.10 ibrav=10, face centered orthorhombic lattice

The direct lattice vectors are:

a1 =
a

2
(1, 0,

c

a
),

a2 =
a

2
(1,

b

a
, 0),

a3 =
a

2
(0,

b

a
,
c

a
).

while the reciprocal lattice vectors are

b1 =
2π

a
(1,−a

b
,
a

c
),

b2 =
2π

a
(1,

a

b
,−a

c
),

b3 =
2π

a
(−1,

a

b
,
a

c
).
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In this case there are three different shapes that can be rotated in different ways depending
on the relative sizes of a, b, and c. If a is the shortest side, there are three different shapes
according to

1

a2
S

1

b2
+

1

c2
, (1)

if b is the shortest side there are three different shapes according to

1

b2
S

1

a2
+

1

c2
, (2)

and if c is the shortest side there are three different shapes according to

1

c2
S

1

a2
+

1

b2
. (3)

For each case there are two possibilities. If a is the shortest side, we can have b < c or b > c,
if b is the shortest side, we can have a < c or a > c, and finally if c is the shortest side we can
have a < b or a > b. In total we have 18 distinct cases. Not all cases give different BZ. All the
cases with the < sign in Eqs. 1, 2, 3 give the same shape of the BZ that differ for the relative
sizes of the faces. All the cases with the > sign in Eqs. 1, 2, 3 give the same shape with faces
of different sizes and oriented in different ways. Finally the particular case with the = sign in
Eqs. 1, 2, 3 give another shape with faces of different size and different orientations. We show
all the 18 possibilities and the labels used in each case.

We start with the case in which a is the shortest side and show on the left the case b < c
and on the right the case b > c. The first possibility is that 1

a2
< 1

b2
+ 1

c2
:

The figures have been obtained with b/a = 1.2 and c/a = 1.4 (left part b < c), and with
b/a = 1.4 and c/a = 1.2 (right part b > c).

The second possibility is that 1
a2

= 1
b2

+ 1
c2

:
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The figures have been obtained with b/a = 1.2 and c/a = 1.80906807 (left part b < c) and with
b/a = 1.80906807 and c/a = 1.2 (right part b > c).

The third possibility is that 1
a2
> 1

b2
+ 1

c2
:

The figures have been obtained with b/a = 1.2 and c/a = 2.4 (left part b < c), and with
b/a = 2.4 and c/a = 1.2 (right part b > c).

Then we consider the cases in which b is the shortest side and show on the left the case in
which a < c and on the right the case a > c.

We have the same three possibilities as before. The first possibility is that 1
b2
< 1

a2
+ 1

c2
:
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The figures have been obtained with b/a = 0.9 and c/a = 1.2 (left part a < c) and b/a = 0.75
and c/a = 0.95 (right part a > c).

The second possibility is that 1
b2

= 1
a2

+ 1
c2

:

The figures have been obtained with b/a = 0.8 and c/a = 1.33333333333 (left part a < c), and
b/a = 0.6 and c/a = 0.75 (right part a > c).

The third possibility is than 1
b2
> 1

a2
+ 1

c2
:
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The figures have been obtained with b/a = 0.8 and c/a = 2.0 (left part a < c), and with
b/a = 0.4 and c/a = 0.5 (right part a > c).

Finally we consider the case in which c is the shortest side and show on the left the case in
which a < b and on the right the case in which a > b.

The first possibility is that 1
c2
< 1

a2
+ 1

b2
:

The figures have been obtained with b/a = 1.2 and c/a = 0.85 (left part a < b) and b/a = 0.85
and c/a = 0.75 (right part a > b).

The second possibility is that 1
c2

= 1
a2

+ 1
b2

:

The figures have been obtained with b/a = 1.333333333 and c/a = 0.8 (left part a < b) and
with b/a = 0.66 and c/a = 0.5508422 (right part a > b).

Finally the third possibility is that 1
c2
> 1

a2
+ 1

b2
:
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The figures have been obtained with b/a = 2.0 and c/a = 0.8 (left part a < b), and b/a = 0.5
and c/a = 0.4 (right part a > b).

1.11 ibrav=11, body centered orthorhombic lattice

The direct lattice vectors are:

a1 =
a

2
(1,

b

a
,
c

a
),

a2 =
a

2
(−1,

b

a
,
c

a
),

a3 =
a

2
(−1,− b

a
,
c

a
).

while the reciprocal lattice vectors are:

b1 =
2π

a
(1, 0,

a

c
),

b2 =
2π

a
(−1,

a

b
, 0),

b3 =
2π

a
(0,−a

b
,
a

c
).

In this case the BZ has one shape that can be rotated in different ways depending on the
relative sizes of a, b, and c. Similar orientations and BZ that differ only for the relative sizes
of the faces are obtained for the cases that have in common the longest side. Therefore we
distinguish the cases in which a is the longest side and b < c or b > c, the cases in which b is
the longest side and a < c or a > c and the cases in which c is the longest side and a < b or
a > b. We have 6 distinct cases.

First we take a as the longest side and show on the left the case b < c and on the right the
case b > c:
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The figures have been obtained with b/a = 0.7 and c/a = 0.85 (left part b < c) and b/a = 0.85
and c/a = 0.7 (right part b > c).

Then we take b as the longest side and show on the left the case in which a < c and on the
right the case in which a > c:

The figures have been obtained with b/a = 1.4 and c/a = 1.2 (left part a < c) and b/a = 1.2
and c/a = 0.8 (right part a > c).

Finally we take c as the longest side and show on the left the case in which a < b and on
the right the case in which b < a:
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The figures have been obtained with b/a = 1.2 and c/a = 1.4 (left part), and b/a = 0.8 and
c/a = 1.2 (right part).

1.12 ibrav=12, simple monoclinic lattice, c unique

The direct lattice vectors are:

a1 = a(1, 0, 0),

a2 = a(
b

a
cos γ,

b

a
sin γ, 0),

a3 = a(0, 0,
c

a
).

while the reciprocal lattice vectors are:

b1 =
2π

a
(1,−cos γ

sin γ
, 0),

b2 =
2π

a
(0,

a

b sin γ
, 0),

b3 =
2π

a
(0, 0,

a

c
).

The Brillouin zone is:

The figure has been obtained with b/a = 0.8, c/a = 1.4 and cos γ = 0.3.
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1.13 ibrav=-12, simple monoclinic lattice, b unique

The direct lattice vectors are:

a1 = a(1, 0, 0),

a2 = a(0,
b

a
, 0),

a3 = a(
c

a
cos β, 0,

c

a
sin β),

while the reciprocal lattice vectors are:

b1 =
2π

a
(1, 0,−cos β

sin β
),

b2 =
2π

a
(0,

a

b
, 0),

b3 =
2π

a
(0, 0,

a

c sin β
).

The Brillouin zone is:

The figure has been obtained with b/a = 0.8, c/a = 1.4 and cos β = 0.3.

1.14 ibrav=13,14, one-base centered monoclinic, triclinic

These lattices are not supported by this feature, you have to give explicitly the coordinates of
the path.
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